#### Mid-Coast Implementation Ready TMDL

Sediment Technical Working Group

Wednesday, March 20, 2013 Newport, Oregon

## Shallow Landslide Prediction Methods

- Factor of Safety Approach
- Geomorphic Approach

#### **Factor of Safety Approach**

## FS = Resisting Stress Driving Stress

$$FS = \frac{c_{\rm r} + c_{\rm s} + [q_{\rm t} + \gamma_{\rm m}D + (\gamma_{\rm sat} - \gamma_{\rm w} - \gamma_{\rm m})H_{\rm w}D]\cos^2\beta\tan\phi}{[q_{\rm t} + \gamma_{\rm m}D + (\gamma_{\rm sat} - \gamma_{\rm m})H_{\rm w}D]\sin\beta\cos\beta}$$



 $c_r$  = cohesive strength contributed by tree roots (force/area)

 $c_s$  = cohesive strength of soil (force/area)

 $q_t$  = uniform surcharge due to weight of vegetation (force/area)

 $\gamma_m$  = unit weight of moist soil above phreatic surface (weight/volume)

 $\gamma_{sot}$  = unit weight of saturated soil below phreatic surface (weight/volume)

 $\gamma_w$  = unit weight of water (9810 N/m<sup>3</sup> of 62.4 lb/ft<sup>3</sup>)

D = thickness of soil above slip surface (length)

 $H_{_{\scriptscriptstyle W}}$  = height of phreatic surface above slip surface, normalized relative to soil

thickness (dimensionless)
= slope angle (degrees)

 $\phi$  = angle of internal friction (degrees)

Source: Haneberg 2004 – A Rational Probabilistic Method for Spatially Distributed Landslide Hazard Assessment

FS < 1 = Failure

#### PISA-m

- Probabilistic Infinite Slope Analysis that is map based
- Developed by Bill Haneberg (Haneberg 2004)
- Based on USFS model LISA and DLISA
- Incorporates parameter uncertainty
- Predicts probability of slope failure using factor of safety
- Availability of input data can be limited

Source: Haneberg 2004 - A Rational Probabilistic Method for Spatially Distributed Landslide Hazard Assessment

#### PISA-m



Source: Haneberg 2004 – A Rational Probabilistic Method for Spatially Distributed Landslide Hazard Assessment

2014-919500005189

#### **Geomorphic Approach**

- Principal assumption:
   All factors being equal, soil properties and landform morphology are the primary indicators of shallow landslide susceptibility.
- Identify important indicators and classify into susceptibility categories.
- Tends to over predict susceptibility but good approach when coupled with a ground based review.

#### **Shallow Landslide Analysis**

- 1. Calibration
  - Field Inventory
  - Identify Indicators
    - Slope, Landform, Lithology
    - Precipitation, Vegetation
- 2. Susceptibility Mapping
- 3. Stream Delivery



#### **Inventory Data**

- Landslide Type / Origin
- Landform Type
- Slope (pre slide)
- Volume and Size
- Transport distance
- Vegetation Age
- Soil Characteristics (bedrock, soil type)
- Many other things

#### **Inventory Data Summary**

Erodible (Elk Creek, Scottsburg, Mapleton)

Resistant (Tillamook, Vida, Dallas, Estacada)

| Total # Landslides<br>(Does not include road related) | 326  | 135  |
|-------------------------------------------------------|------|------|
| Study Area (sq/mile)                                  | 22   | 20.2 |
| Landslide Density (#/sq mile                          | 14.8 | 6.7  |

| Landform Type                  | Erodible | Resistant |  |  |
|--------------------------------|----------|-----------|--|--|
| Concave (cv)                   | 133      | 33        |  |  |
| Uniform (un)                   | 122      | 74        |  |  |
| Convex (vx)                    | 38       | 23        |  |  |
| Irregular (ir)                 | 22       | 1         |  |  |
| Other / not classified (ot/NA) | 11       | 4         |  |  |

| Origin           | Erodible | Resistant |
|------------------|----------|-----------|
| In Channel/Gully | 1        | 3         |
| Channel Adjacent | 84       | 64        |
| Upslope          | 241      | 68        |

Note: Excludes road related landslides

#### **Inventory Areas**

| Site                 | Robison et al 1999<br>Lithology<br>Classification | DEQ<br>Lithology<br>Classification | Use         |  |
|----------------------|---------------------------------------------------|------------------------------------|-------------|--|
| <u>Big Elk Creek</u> | -                                                 |                                    | Validation  |  |
| North Fork Siuslaw   | -                                                 |                                    | Valluation  |  |
| <u>Elk Creek</u>     |                                                   | Erodible                           |             |  |
| Mapleton             | Red Zone Tyee                                     |                                    | Calibration |  |
| <u>Scottsburg</u>    |                                                   |                                    |             |  |
| <u>Tillamook</u>     | Dad Zana Isnaaya                                  | Resistant                          |             |  |
| Vida                 | Red Zone Igneous                                  |                                    |             |  |
| <u>Dallas</u>        |                                                   |                                    |             |  |
| Estacada             | Random Stratified                                 | 1100.00011                         |             |  |
| Vernonia             |                                                   |                                    |             |  |

<u>LiDAR available</u>



### **Planview Landform Types**



Image source: Kimerling et al 2011. Map Use: Reading, Analysis, Interpretation, seventh edition

# Non-Road Landslides Stratified by Landform Type

#### **Resistant Sites**



No significant difference between landforms ANOVA (p > 0.1) p = 0.92

Legend

cv = concave un = uniform

vx = convex ir = irregular

#### **Erodible Sites**



Concave is significantly different from other landforms ANOVA/Tukey (p < 0.10) p = 0.001

14

### Landform / Slope Classification

|                                  |                          | Percent Slope Class  |          | Percent of Landscape     |                         |                          |
|----------------------------------|--------------------------|----------------------|----------|--------------------------|-------------------------|--------------------------|
|                                  |                          | Erodible Lithologies |          | Resistant<br>Lithologies | Erodible<br>Lithologies | Resistant<br>Lithologies |
| Susceptibility<br>Classification | Percentile of Landslides | Convex &<br>Uniform  | Concave  | All Landform<br>Types    |                         |                          |
| Stable                           | 0%                       | 0% -49%              | 0% -44%  | 0% -49%                  | 30%                     | 24%                      |
| Very Low                         | 0% - 9%                  | 50% -64%             | 45% -59% | 50% -64%                 | 15%                     | 21%                      |
| Low                              | 10%-24%                  | 65% -79%             | 60% -69% | 65% -74%                 | 18%                     | 18%                      |
| Moderate                         | 25% - 49%                | 80% -89%             | 70% -79% | 75% -84%                 | 14%                     | 16%                      |
| High                             | 50%-100%                 | 90% ≤                | 80% ≤    | 85% ≤                    | 23%                     | 21%                      |





#### **Stream Delivery**

- Slope / Slope Length
- Channel Junction Angle





Source: Benda and Cundy 1990. Predicting deposition of debris flows in mountain channels.